Oferta dydaktyczna Instytutu Informatyki

Poniższa lista przedstawia przedmioty, które są uczone w Instytucie Informatyki, niektóre z nich co roku, niektóre z mniejszą częstotliwością Każdy student Instytutu Informatyki studiuje wg indywidualnego toku studiów, wybierając (zgodnie z pewnymi zasadami) z tej listy swoje przedmioty.

Jeżeli zastanawiasz się nad studiami u nas, jeżeli chcesz wiedzieć, czy na Uniwersytecie można zostać inżynierem, jeżeli interesuje Cię 1000 zł stypendium miesięcznie - zapraszamy na naszą stronę główną

Flight Simulation

Nazwa angielska (title in English): Flight Simulation
Prowadzący (lecturer): Hans de Nivelle
Liczba punktów (ECTS): 9
Liczba punktów 2007 (ECTS since 2007): 6
Rodzaj (type): zaawansowany
Rodzaj od 2007 (type since 2007): informatyczny.I2
Liczba godzin (hours in semester):
wykład:30
ćwiczenia+pracownia:30
Egzamin (exam): tak
Możliwe zajęcia w języku angielskim (can be taught in English): tak
Przedmiot zostal uaktualniony na biezacy rok (updated): nie
Semestr (semester): zimowy

Wymagania (prerequisites)

Opis (description)

The course concentrates on modelling airplanes, but you will learn a lot about physics and mathematics as well.

Program (program)

Laws of motion for points. Energy versus impulse. Specific impulse of a rocket engine, the inherent exponential cost of rocket propulsion.

We will do some calculations on planets and rockets. The physics of rockets is much easier to understand than the physics of airplanes, so it is a good starting point.

Elements of linear algebra, inner and outer products. Moments.

Usage of quaternions for the representation of orientations.

Laws of motion for rigid, non-point objects. Everyone knows Newton's law, F = m.a, which can be used for determining how a point with mass m reacts to a force with strength F. But what if the object is not a point, and the force does not work in the middle of the object? In that case, the object will start to rotate. We will derive laws that connect eccentric forces and resulting rotation to the mass distribution of an object.

Techniques for tabling continuous functions, lagrange interpolation.

Modelling of Wings. Understanding the qualitive relation between angle of attack, drag and lift.

How the airplane is flown: Take off, landing, turning, descending, climbing. Importance of stability.

Modelling and designing automatic control. Maintaining a given altitude, maintaining a given heading, maintaining a certain speed. All functions of the autopilot can be viewed as stability augmentation. Therefore, one needs to have some insight in the mathematical theory of stability, and in Laplace transforms.

Map projections, modelling of the environment.

Navigational aids, VOR, NDB and ILS. Structure of air traffic control. Understanding ATC communication.

Theory of wings. Numerically approximating solutions of the Navier-Stokes equation, theory of circulation.

Libraries for computer graphics, OGRE, SFML and Allegro.

Modelling of weather phenomena: fog, wind and turbulence.

Literatura (references)

Jeżeli jesteś zainteresowany studiowaniem w naszym instytucie, zapraszamy na stronę poświęconą tegorocznej rekrutacji.

Nazwa użytkownika (user name):
Hasło (password):